Is anyone concerned about radiation & ultra violet light breaking down the THC. Seems if you get the bulbs that close it would have some effect. My private reserve almost always comes from mid level buds, as I find them to be the tastiest & most potent.
You are evidently talking about while in flower and HPS lights don't produce any UV-B rays at all. But UV-B rays are known to increase THC production so UV-B rays are not something undesirable to have. If you add UV-B rays to your flowering lighting the result will be increases resin and THC production.
Inside the Trichome
THC and other cannabinoids are produced in only one place on the cannabis plant: inside the heads of the trichomes. How it happens: Organelles produced by the plant called Vacuoles – which contain phenols, a chemical compound similar to alcohol [pictured at right in
blue], and another type of organelle called plastids – containing hydrocarbons called terpenes [
red], make their way up the trichome stalk [
green] and combine inside the secretory cavity into a fibrous mat [
yellow].
This concentrated mat is hit by UV-B light waves, causing the creation of cannabinoids. Since all of the psychoactive ingredients are produced inside the trichome, these tiny resin hairs have long been sought after by hash and oil makers and can be separated from the plant and harvested in a variety of ways
Recent Swiss trials in outdoor plots of clones grown at different altitudes have shown that there is correlation between higher altitude and increased potency There are more UVB rays at high altitude.
An elaboration on the phytochemical process that makes THC
permalink
The resin exuded by the glandular trichome forms a sphere that encases the head cells.
When the resin spheres are separated from the dried plant material by electrostatic attraction and placed on a microscope slide illuminated with a 100W incandescent bulb, they appear very dark when observed through a 300X microscope. Since orange, red, and infrared are the component wavelengths of incandescent light, and since the absorption of light makes an object dark or opaque to the frequency of the incoming wave, one can conclude that these wavelengths are probably not directly involved in energizing the cannabinoid pathway.
However, the resin sphere is transparent to ultraviolet radiation.
The author found through trial and error that only one glandular
trichome exhibits the phytochemical process that will produce the amount of THC associated with pain relief, appetite stimulation and anti-nausea; euphoria and hallucinations are side-effects, however. This trichome is triggered into growth by either of the two ways that the floral bract is turned into fruit.
Of all the ways that optics are involved in the phytochemical production of THC, the most interesting has to be how the head cells and cannabinoid molecules are tremendously magnified by the resin sphere. These and other facts are curiously absent from the literature. The footnotes update the literature to include electrostatic separation of the resin sphere from the dried plant material and marijuana parthenocarpy.
(1) "For all spheres, a ray drawn perpendicular to the sphere's surface will intersect the center of the sphere, no matter what spot on the surface is picked, and the magnifying power(a) of a glass sphere is greater the smaller its size. A sphere of glass can also bring light that is heading to a focus behind it to a point within it, with freedom from two aberrations, spherial aberration and coma, but not from chromatic aberration. Chromatic aberration results when different wavelengths are focused on different planes and is the most difficult of the aberrations to correct. The human eye lens also exhibits chromatic aberration, but a yellow pigment(b) called the macula lutea in the fovea, an area at the rear of the eyeball, corrects this problem by the way it absorbs blue light."
(a)"The formula to calculate the magnifying power of a sphere is l=333/d, where l is the magnifying power and d is the diameter of the sphere expressed in mm."
(b)Interestingly, the resin exuded by drug-type flowering female marijuana plants has a yellow tint. Could this pigment work to correct chromatic aberration in the resin sphere like the macula lutea does in the fovea for the eyeball?
(2) Quoting from the Mahlberg and Kim study of hemp(a) "THC accumulated in abundance in the secretory cavity where it was associated with the following: cell walls, surface feature of secretory vesicles, fibrillar material released from disc cell wall, and cuticle. It was not associated with the content of the secretory vesicles."
The resin spheres contain the THC. It is not contained in the leaf or floral bract. After the resin spheres are dissolved in solvent or dislodged by electrostatic attraction, and a microscopic examination of the leaf or floral bract has revealed that only the glandular trichomes' stalks remain, no effect will be felt after smoking the dried plant material from which the resin spheres have been removed.
(3) The electrostatic collection of the resin spheres from dried marijuana plants with plenty of ripe seeds has been for hundreds of years the method indigenous people of North Africa and Lebanon have used to make hashish. Obtain a round metal can 8" or so in diameter x 3" or so in depth (the kind that cookies come in) with a smooth lid. Obtain 2 ounces of dried marijuana with plenty of ripe seeds in the tops. To remove the seeds and stems, sift the marijuana tops through a 10-hole-to-the-inch wire kitchen strainer into the can. Close the can with the lid and vigorously shake the closed can three or four times. This gives the resin spheres an excess negative charge. Let the can sit for a moment and then remove the lid. Opposites attract. The negative-charged resin spheres have been attracted to the metal surface of the can and lid which has a positive charge. Take a matchbook cover or credit card and draw the edge across the surface of the lid. Note the collected powder. Observed under 300X magnification, the collected powder from this "shake" is composed of resin spheres with an occasional non-glandular trichome. As the marijuana is shaken again and again, and more of the yellow resin spheres are removed from the plant material, the collected powder gradually becomes green-colored as the number of non-glandular trichomes increases in the collected powder. The greener the powder, the less the effect.
(4) "Cannabinoids represent a dimer consisting of a terpene and a phenol component. Cannabigerol (CBG) is the first component of the pathway. It undergoes chemical change to form either cannabichromene (CBC), or cannabidiol (CBD). Delta 9-tetrahydrocannabinol (THC) is derived from CBD."
(5) "Pate (1983) indicated that in areas of high ultraviolet radiation exposure, the UVB (280-320 nm) absorption properties of THC may have conferred an evolutionary advantage to Cannabis capable of greater production of this compound from biogenetic precursor CBD. The extent to which this production is also influenced by environmental UVB has also been experimentally determined by Lydon et al. (1987)."
The writer's own experience allow for a more specific conclusion: If the UVB photon is missing from the light stream(a), or the intensity as expressed in µW/cm2 falls below a certain level(b), the phytochemical process will not be completely energized with only UVA photons which are more penetrating but less energetic, and the harvested resin spheres will have mostly precursor compounds and not fully realized THC(c).