Colloidal Silver-Facts and Fallacies
Contrary to the popular belief that electrochemistry or electrolysis produces colloidal silver, is incorrect. It does nothing of the sort. It only produces ionic silver when the two electrodes have a voltage potential across them and current is allowed to flow. Also, the entire process must be shielded from broadband light. This current is then responsible for extracting silver atoms from the silver anode and during that process, one or more conduction electrons are removed. This then results in the silver atom turning into a positive cation, which will be attracted to the silver cathode if in close proximity. The fact that some colloid formation is initiated anyway is due to the presence blue, indigo, violet and UV light forming part of existing ambient light conditions.
Why most attempts at producing colloidal silver have gone awry, is due to the ignorance about the need of short wavelengths of light in reducing ionic silver to neutral silver. For a start, the colour blue at around 420 nm is absorbed by silver, and this causes colloidal silver at around 420 nm to present a yellowish hue. There is a reason for this. Blue is missing from the visible spectrum. Darker blues, such as indigo, violet and ultra-violet from 420 nm to around 320 nm (penetration limit of UV to glass) have an ever increasing energy component expressed in electron volts. Electron volt levels (eV), ranging from 2.64 eV in the blue (470 nm) to 6.2 eV in the Far UV (200 nm) have the ability to effect this transfer. These frequencies are of a sufficient strength to collide with hydrated electrons (captive in the water), to whom they impart most of their energy during such collisions. Imagine any electrochemical operation in ambient light conditions subject to the full extent of the visible spectrum from violet 400 nm (3.0eV) to infrared 1000 nm (1.24 eV), perhaps with some artificial lights thrown in, and it becomes obvious that there will never be any predictable outcomes. The result of using broadband light is a motley of varying size clusters (poly-suspended), the result of this which will not conducive to the making of an effective antibiotic. Light and temperatures change from moment to moment, are never the same, and as such, also needs to be controlled [8-10,16,17-20].
We found that the best results for producing high grade colloidal silver (without also producing ionic silver content), is to work in complete darkness and at a low temperature. We used a domestic refrigerator, set to maximum 10°C. During the subsequent electrochemical process, we simultaneously radiate the ionic silver produced with high energy, short wavelength blue, indigo, violet or UV light. The photons so produced, then collide with captive hydrated electrons in the water and liberating them. This is referred to as Photon Electron Transfer or photo reduction and responsible for turning ionic silver (Ag+) into neutral silver clusters of atoms (Ag0). The current view on this procedure is that the frequency of the photons is a deciding factor in the number of atoms in the cluster, and thus its size in nano metres. Contrary to existing views that atoms come together to form clusters, it is the water that forces the atoms to cling together in clusters. As some scientists put it, “light sculptures nanoparticles” On the matter of irradiation of ionic silver by blue, indigo, violet and ultraviolet light, we wish to hark back to the technology of Black & White film exposure in vogue decades ago [21-23]. Exposure to these high energy photons, ionic silver (silver halides) deposited on the film material are exposed, and a latent image is formed. This image, although real, cannot be seen until the film and the exposed silver halide are developed by chemistry (Developer and Fixer). A deciding factor in these exposures is the number of photons that collide with the silver ions. It stands to reason that an insufficient number of photons will not expose every silver ion, but a sufficient number of photons will. Likewise, it is with electrochemically produced ionic silver. The level of exposure depends on the concentration of silver ions making their way from the anode to the cathode. An insufficient number of photons may not collide with a sufficient number of hydrated electrons in the water or worse, the ions may not be evenly distributed due to contamination or matrix formation of the water molecules. The result is that some ionic silver remains and the end product is an undetermined ratio of both ionic and colloidal silver. Other deciding factors that arise are from contamination in the water and its ability to create molecular matrixes. It is claimed that there are three types of molecular matrixes for water. These are appropriately named the crate, the prism and open book configuration. It is further claimed that the first two (crate and prism) are able to contain matter other than itself. That is certainly the case when these matrixes hold hydrated electrons captive. Submersed silver atoms in a cluster present a negative electrical charge. This is due to the unpaired single conduction electron in the outer shell. Positively charged hydrogen ions in the water, orientate themselves onto the negative appearing atomic silver clusters and literally hold the cluster captive. This is referred to as the Stern layer, the innermost of the double layers. Beyond the Stern layer, a second layer called the diffuse layer consists of a mixture of negative and positive ions. Between these two layers, an interfacial electrostatic charge called the Zeta potential is created. For silver, that charge is negative. This Zeta potential is located between the Stern layer and diffuse layer (Double layer). Generally, if all clusters are all of a same small size and shape (mono suspension) and the concentration (ppm) low, the Zeta potential [24], is bound to be high. At around -25 mV, the Zeta potential starts to exert a repulsive action against the attractive forces of the Van der Waals Force. When the concentration is low, the Zeta potential can theoretically reach a level of -100 mV. Likewise, if all clusters are of the same minus potential, there will be a maximum repelling action, and thus, a true nano sized and stable colloidal suspension exists. However, too high a concentration (beyond saturation level), instability may set in due to clusters being compressed.