THC - CBD CBN - MAKE MORE USEING UVB`s/ UVA`s..CHEAP&SIMPLE.?!!

T.H.Cammo

Well-Known Member
Go back and check post #50 - he knows what he's talking about!

The real problem with this issue is that people tend to equate resin and THC! THEY ARE NOT THE SAME THING. THC gets you high - resin just makes you cough! Resin is made up of many things, THC is just one of them.

I have never seen any reliable evidence that extra UV-B (or any other UV spectrum) will actually produce higher levels of THC. Has anyone out there seen such proof? Where is it? This is one of those mythes that gets passed around since day one! Everyone has heard it and everyone is affraid to call "Bullshit!". It's like that bullshit about tinfoil causing "Hotspots"! Let me ask you all a question - has anybody ever really had hotspots because of aluminum foil? Hell no - because it's BULLSHIT! I doubt that there is any real evidence that UV-B (or whatever) will cause elevated THC levels either! Of course I could be wrong, but that's just me sticking my neck out!
 

justlearning73

Well-Known Member
T.H Cammo,
There have been numerous grows were they have done the UVB spectum produces more Trics. and have proven that this does work. I dont have the links but do a search they are out there.
 

eza82

Well-Known Member
An elaboration on the phytochemical process that makes marijuana THC The resin exuded by the glandular trichome forms a sphere that encases the head cells.

When the resin spheres are separated from the dried plant material by electrostatic attraction and placed on a microscope slide illuminated with a 100W incandescent bulb, they appear very dark when observed through a 300X microscope. Since orange, red, and infrared are the component wavelengths of incandescent light, and since the absorption of light makes an object dark or opaque to the frequency of the incoming wave, one can conclude that these wavelengths are probably not directly involved in energizing the cannabinoid pathway.

However, the resin sphere is transparent to ultraviolet radiation.

The author found through trial and error that only one glandular
trichome exhibits the phytochemical process that will produce the amount of THC associated with pain relief, appetite stimulation and anti-nausea; euphoria and hallucinations are side-effects, however. This trichome is triggered into growth by either of the two ways that the floral bract is turned into fruit.

Of all the ways that optics are involved in the phytochemical production of THC, the most interesting has to be how the head cells and cannabinoid molecules are tremendously magnified by the resin sphere. These and other facts are curiously absent from the literature. The footnotes update the literature to include electrostatic separation of the resin sphere from the dried plant material and marijuana parthenocarpy.


(1) "For all spheres, a ray drawn perpendicular to the sphere's surface will intersect the center of the sphere, no matter what spot on the surface is picked, and the magnifying power(a) of a glass sphere is greater the smaller its size. A sphere of glass can also bring light that is heading to a focus behind it to a point within it, with freedom from two aberrations, spherial aberration and coma, but not from chromatic aberration. Chromatic aberration results when different wavelengths are focused on different planes and is the most difficult of the aberrations to correct. The human eye lens also exhibits chromatic aberration, but a yellow pigment(b) called the macula lutea in the fovea, an area at the rear of the eyeball, corrects this problem by the way it absorbs blue light."

(a)"The formula to calculate the magnifying power of a sphere is l=333/d, where l is the magnifying power and d is the diameter of the sphere expressed in mm."

(b)Interestingly, the resin exuded by drug-type flowering female marijuana plants has a yellow tint. Could this pigment work to correct chromatic aberration in the resin sphere like the macula lutea does in the fovea for the eyeball?

(2) Quoting from the Mahlberg and Kim study of hemp(a) "THC accumulated in abundance in the secretory cavity where it was associated with the following: cell walls, surface feature of secretory vesicles, fibrillar material released from disc cell wall, and cuticle. It was not associated with the content of the secretory vesicles."

The resin spheres contain the THC. It is not contained in the leaf or floral bract. After the resin spheres are dissolved in solvent or dislodged by electrostatic attraction, and a microscopic examination of the leaf or floral bract has revealed that only the glandular trichomes' stalks remain, no effect will be felt after smoking the dried plant material from which the resin spheres have been removed.

(3) The electrostatic collection of the resin spheres from dried marijuana plants with plenty of ripe seeds has been for hundreds of years the method indigenous people of North Africa and Lebanon have used to make hashish. Obtain a round metal can 8" or so in diameter x 3" or so in depth (the kind that cookies come in) with a smooth lid. Obtain 2 ounces of dried marijuana with plenty of ripe seeds in the tops. To remove the seeds and stems, sift the marijuana tops through a 10-hole-to-the-inch wire kitchen strainer into the can. Close the can with the lid and vigorously shake the closed can three or four times. This gives the resin spheres an excess negative charge. Let the can sit for a moment and then remove the lid. Opposites attract. The negative-charged resin spheres have been attracted to the metal surface of the can and lid which has a positive charge. Take a matchbook cover or credit card and draw the edge across the surface of the lid. Note the collected powder. Observed under 300X magnification, the collected powder from this "shake" is composed of resin spheres with an occasional non-glandular trichome. As the marijuana is shaken again and again, and more of the yellow resin spheres are removed from the plant material, the collected powder gradually becomes green-colored as the number of non-glandular trichomes increases in the collected powder. The greener the powder, the less the effect.

(4) "Cannabinoids represent a dimer consisting of a terpene and a phenol component. Cannabigerol (CBG) is the first component of the pathway. It undergoes chemical change to form either cannabichromene (CBC), or cannabidiol (CBD). Delta 9-tetrahydrocannabinol (THC) is derived from CBD."

(5) "Pate (1983) indicated that in areas of high ultraviolet radiation exposure, the UVB (280-320 nm) absorption properties of THC may have conferred an evolutionary advantage to Cannabis capable of greater production of this compound from biogenetic precursor CBD. The extent to which this production is also influenced by environmental UVB has also been experimentally determined by Lydon et al. (1987)."

The writer's own experience allow for a more specific conclusion: If the UVB photon is missing from the light stream(a), or the intensity as expressed in µW/cm2 falls below a certain level(b), the phytochemical process will not be completely energized with only UVA photons which are more penetrating but less energetic, and the harvested resin spheres will have mostly precursor compounds and not fully realized THC(c).

(a)Examples of an environment where the UVB photon would be missing from the light stream include all indoor cultivation illuminated by HID bulbs and in glass or corrugated fiberglass covered greenhouses.

(b)"The maximum UVB irradiance near the equator (solar elevation angle less than 25 deg.) under clear, sunny skies is about 250 µW/cm2. It was observed that the daily solar UVB in Riyadh, Saudi Arabia (N24.4Lat.) decreased from September to December by about 40% (Hannan et al. 1984). The further a person is from the tropics, the less UVB radiation there is: the average annual exposure of a person living in Hawaii is approximately four times that of someone living in northern Europe." Below are some UVB readings taken in Hoyleton, Illinois, on a clear sunny day in June by David Krughoff as reported in Reptile Lighting 2000.

7am: 12 microwatts/cm2
8am: 74 microwatts/cm2
9am: 142 microwatts/cm2
10am: 192 microwatts/cm2
11am: 233 microwatts/cm2
12pm: 256 microwatts/cm2
1pm: 269 microwatts/cm2
2pm: 262 microwatts/cm2
3pm: 239 microwatts/cm2
4pm: 187 microwatts/cm2
5pm: 131 microwatts/cm2
6pm: 61 microwatts/cm2

(c)Cannabinoid pathway: Anywhere in this pathway UVB does a better job than UVA in energizing a phytochemical reaction that will produce more fully realized THC because "all cannabinolic compounds show an absorption maximum between 270 and 280 nm in the ultraviolet region."

(6) Capitate-stalked glandular trichome.

(7) #1: The ovum has been fertilized and there is a seed developing: In the areas of the Northern Hemisphere where indigenous people have grown heterozygous drug-type marijuana for hundreds of years, pollination is used to trigger the growth of the capitate-stalked glandular trichome on the floral bract and concomitant leaves of the flowering females before the autumnal equinox(a) so the majority of seeds will be ripe(b) before November.

(7) #2: The floral bract has become parthenocarpic: Parthenocarpic fruits develop without fertilization and have no seeds. Except for transmutation and turning lead into gold, there has been more nonsense written about seedless marijuana than on any other subject. In marijuana parthenocarpy, the floral bract (the fruit) enlarges in size as though there were a seed growing inside, and the capitate-stalked glandular trichome is triggered into growth on the floral bract and concomitant leaves. "Most popular supermarket tomatoes are parthenocarpic which was induced artificially by the application of dilute hormone sprays (such as auxins) to the flowers." In a trial, marijuana parthenocarpy was not induced by the application of the spray used on tomatoes. Only the photoperiod(c) will trigger parthenocarpy in flowering female marijuana plants. Marijuana parthenocarpy occurring before the autumnal equinox is considered by the author to be "long-day" and marijuana parthenocarpy occurring after the autumnal equinox to be "short-day".

The longest photoperiod that will trigger parthenocarpy in unfertilized flowering homozygous(d) Indica female marijuana plants is 13:00 hours, give or take 15 minutes. This effect can be obtained in the month of August at N35Lat, and because the capitate-stalked glandular trichomes received plenty of UVB during this month at this latitude, the harvested resin spheres had fully realized THC. Rating: euphoria and hallucinations, major appetite boost and pain relief, deep dreamless sleep. These plants seldom grow taller than four feet but potency makes up for the reduced harvest.

The gene pool is heterozygous if a flowering female marijuana plant is not parthenocarpic by the end of the first week in September in the Northern Hemisphere. If this is the case, pollination is used instead of parthenocarpy to trigger the growth of the capitate-stalked glandular trichome before the autumnal equinox to obtain as much fully realized THC as possible in the harvested resin spheres by the time the majority of the seeds are ripe.

The longest photoperiod that will trigger parthenocarpy in unfertilized flowering heterozygous female marijuana plants is 11:00 hours, give or take 15 minutes: This effect can be obtained in the month of November at N35Lat. Because of the low intensity of UVB radiation at this latitude at sea level during November, the harvested resin spheres evidenced only slightly more THC than precursor compounds. Rating: mild to medium euphoria, appetite boost and pain relief, good snooze.

Thai marijuana falls into this 11:00 hour category, and its parthenocarpy is characterized by an inflorescence in which many floral bracts are attached to an elongated meristem. It is these elongated meristems that are harvested to become a THAI STICK. On the other side of the world, Mexican marijuana grown around the same latitudes (Michoacan, Guerrero, Oaxaca) also falls into this short-day parthenocarpic category and the unfertilized marijuana will become "sensimilla" in the 11:00 hour photoperiod which begins in mid-December in that region. The winter sunshine in those latitudes has enough UVB intensity to produce fully realized THC--unlike the winter sunshine at N35Lat.

All unfertilized flowering female marijuana plants will become parthenocarpic in a 9:00 hour photoperiod (15:00 hour dark period): This can be obtained in the month of December at N35Lat. At this latitude in this month there is not even enough UVB in sunlight for precursor vitamin D3 to develop in human skin. The phytochemical process will not produce fully realized THC when UVB falls below a certain level of intensity expressed in µW/cm2. Rating: no effect.

(a)In the Northern Hemisphere above the Tropic of Cancer, the key to all marijuana potency is this: The more days of sunlight the capitate-stalked glandular trichomes' resin spheres accumulate before the autumnal equinox the more fully realized THC.

(b)It is recognized in the indigenous world that drug-type marijuana with a majority of ripe seeds will produce more euphoria, hallucinations, appetite stimulation, pain relief, and sleep aid than with a majority of unripe seeds.

(c)The photoperiodic response is controlled by phytochrome. "Phytochrome is a blue pigment in the leaves and seeds of plants and is found in 2 forms. One form is a blue form(Pfr), which absorbs red light, and the other is a blue-green form(Pr) that absorbs far-red light. Solar energy has 10X more red (660nm) than far-red (730nm) light causing the accumulation of Pfr." The first and last hour of a day's sunlight is mostly red light because of the scattering effect on blue light. "So at the onset of the dark period much of the phytochrome is in the Pfr form. However, Pfr is unstable and returns to phytochrome Pr in the dark." The red light in sunrise returns the Pr to the Pfr form. "Phytochrome Pfr is the active form and controls flowering and germination. It inhibits flowering of short-day plants (the long night period is required for the conversion of Pfr to Pr) and promotes flowering of long day plants."

(d)In Nepal and nearby areas of India where the capitate-stalked glandular trichome is triggered into growth by parthenocarpy rather than by fertilized ovum, great care is taken to make sure that all male marijuana plants are destroyed as soon as they reveal their sex. This is because unfertilized Indica flowering females can have both stigma and anther protruding from the floral bract. In the Indica gene pool, female-produced pollen carries an allele for long-day parthenocarpy, and seeds resulting from this female-produced pollen will produce another generation of female plants that will also exhibit long-day parthenocarpy during flowering. But if pollen from male plants is introduced into this gene pool, the resulting seeds will produce a generation of females that will exhibit short-day parthenocarpy instead. The allele for long-day parthenocarpy in the female-produced pollen is carried into the gene pool by self-pollination and cross-pollination, and perhaps homozygous is used too loosely here to describe the genetic result.

(:cool: It appears that the resin sphere acts as an UVB receptor and magnifying lens. The latter apparently lets it gather in a lot more photons than would otherwise be possible; because a lens also acts as a prism, the resin sphere may prevent some wavelengths from being focused where the phytochemical processes are taking place because they could interfere with the phytochemical process that makes THC.






electrostatic collection of resin spheres and non-glandular trichome


-------illuminated with 100 watt light bulb------- ---illuminated with sunlight---

http://www.greenmanspage.com/guides/thc.html
 

T.H.Cammo

Well-Known Member
(a)Examples of an environment where the UVB photon would be missing from the light stream include all indoor cultivation illuminated by HID bulbs and in glass or corrugated fiberglass covered greenhouses.


Thank you for this extreemly long and informative "Cut and Paste" - but what's the point? This guy's talking about "Outside grows under natural sunlight at various places around the world". He clearly disqualifies "all indoor cultivation illuminated by HID bulbs" as being too lacking in UV-B to produce "fully realized THC". Personally, I find that a little short sided. No, wait a minute, I find that to be erroneousely misinformative (Bullshit!). I was just reading a thread yesterday where a guy got UV burns (with blisters) after only about 10 minutes exposure to a CMH bulb (Ceramic Metal Halide).

Blisters after only 10 minutes? That doesn't sound to me like he needs any extra, added, UV at all!

Back to post #50, did anybody look at it? Like he says there, a plant can only live up to it's potential! No amount of UV is going to change that. Metal Halides (especially CMH) already deliver adequate amounts of UV (despite what your author says).

I will, however, say this - If one is using only regular CFL's (Compact Flouescent Lights) to flower, they could use some extra UV-B radiation!

If anybody wants to discuss this further, please speak for yourself and add a link to the source (reading that whole thing gave me a "Technical" headache!
 

eza82

Well-Known Member
LOL,
Yes I have agreed from the start that genetics are the only "real" key. But understanding various environments around the world to produce the best from the original land strain or to replicate it original environment or the variables of it, is what this thread was about from the start.
Also I have stated plenty a HID MH will produce a certain amount of UVA, UVB, UVC.
I agree with you I don't know what you fighting here ? Kinda nonsensical really.

If he got blisters that quick his phos lining of the globe has depleted to much btw.

This thread was an experiment to replicate the perfect environment, which IMO did exactly what I needed.
Thanks for asking.

EZ
 

T.H.Cammo

Well-Known Member
T.H Cammo,
There have been numerous grows were they have done the UVB spectum produces more Trics. and have proven that this does work. I dont have the links but do a search they are out there.
This is exactly what I mean, more trics doesn't neccesarily mean more THC - it just means more resin! I have done my share of research and I still stand behind what I said.

Adequate UV radiation is all that's required. It's not like co2, where you can deliver 5x the concentration and the yield will increase. Adequate UV will develope "fully realised THC". that means "Only up to the plants potential!"

"I have never seen any reliable evidence that extra UV-B (or any other UV spectrum) will actually produce higher levels of THC. Has anyone out there seen such proof? Where is it? ". That is my original statement. I don't plan on proving myself wrong! Where is it?
 

MT Marijuana

Active Member
Has anyone heard of the SunPulse lamps? They produce a 10K model for E-Ballasts. Was hoping to get some info before spending $140 on one.
 

eza82

Well-Known Member
Be careful ! Don't look at the bulb ever when on ! And don't spend time under ever !
What rating is UVB ? 10.0 ?

Good luck
Eza.
 

eza82

Well-Known Member
"I have never seen any reliable evidence that extra UV-B (or any other UV spectrum) will actually produce higher levels of THC. Has anyone out there seen such proof? Where is it? ". That is my original statement. I don't plan on proving myself wrong! Where is it?
UV-B RADIATION EFFECT ON PHOTOSYNTHESIS, GROWTH AND CANNABINOID PRODUCTION OF TWO Cannabis stavic CHEMOTYPES: by John Lyndon, USDA-ARS, Southern Weed Science Laboratory, P. O. Box 350, Stoneville, MS, 38776, USA: Alan H. Teramura, Department of Botany, University of Maryland, College Park, MD, 20742, USA., & C. Benjamin Coffman, USDA-ARS, Weed Science Laboratory, AEQ, I, Beltsville, MD, 20705, USA: Received August 29, 1986, accepted February 24, 1987: page 201 Although the mechanism is unknown, a relationship exists between cannabinoid content and the attitude altitude at which C. sativa is grown. Mobark et al., (197:cool: suggested that the high-altitude environment was responsible for an increased population of propyl cannabinoids in plants grown in 1300m. The average total cannabinoid content of wild, mature (flowering) Indian C. sativa from elevations between 250m and 1000m was 2.43% (by dry weight); between 1000 m and 2000m was 3.01%; and above 2000m Was 1.39% (Turner et al., 1979). The cannabinoid content in four out of five of these mature Indian C. sativa variants decreased when grown at sea level in Mississippi, USA. One likely factor which may be of significance to cannabinoid production in both high-altitude and tropical environments is ultraviolet radiation. page 202 Pate (1983) reported that C. sativa populations originating from high UV-B environment contained little or no cannabidiol (CBD) but high levels of delta 9 - tetrahydrocannabinol (delta 9 - THC), while the opposite was true for population from low UV-B environments, and proposed that the two distinct C. sativa chemotypes (drug and fiber) evolved as a result of selective pressures brought about by UV-B radiation. Fairbairn and Liebmann (1974) reported that the delta 9 - THC content of leaf tissue from UV irradiated greenhouse-grown drug-type C. sativa was 23% greater than non- irradiated greenhouse-grown plants. However, neither the spectral distribution nor the daily dose of UV radiation . The objectives of this study were to test (a) The physiological and morphological insensitivity of both the drug and fiber types of C. sativa to UV-B radiation; and (b) to correlate this insensitivity with a change in production of delta 9 - THC or CBD in drug and fiber type plants, respectively. Material and Methods Page 203 Results....Only the delta 9 THC content in leaf and floral tissues of drug type plants increased significantly with UV-B radiation. page 204 Discussion page 205 The results presented here indicate that both types of vegetative C. sativa are physiologically and morphologically insensitive to UV-B radiation. The increased level of delta 9 - THC found in leaf tissues upon UV-B irritation may account for this insensitivity on the drug type plants. However, fiber-type plants showed no comparable change in the level of CBD which has similar UV-B absorption characteristics). Thus, the contribution of cannabinoids to the UV-B insensitivity in vegetative C. sativa is equivocal. Perhaps the background levels of CBD present in the fiber-type tissues were sufficient to protect the plant from UV-B radiation. Alternatively, other UV-B absorbing compounds such as flavonoids may account for this UV-B insensitivity. Flavonoids are the principle pigments associated with UV radiation greening in plants . Barrett et al (1985) reported the concentration of Cannflavin A (a flavonoid from C. sative) was similar in drug and fiber type leaf tissue, whereas Gellert et al (1974) reported relatively more flavonoids in drug than fiber type plants. Whether the quality and quantity of flavonoids in leaf tissues of the chemotypes in this study were sufficient to account for observed UV-B insensitivity was not determined. It should be pointed out, however that one should be cautions when extrapolating from greenhouse to field conditions in UV-B studies. In addition, when considering the distribution of C. sativa, one cannot overlook the fact that it is one of the oldest cultivated plants known to man. Thus, its present distribution may possibly be an artifact of man's cultural practices. In conclusion, the delta 9 THC content in leaf and floral tissues of greenhouse grown drug-type C. sativa increased linearly with UV-B dose. Other cannabinoids in drug and fiber-type plants were unaffected by UV-B radiation. Both drug and fiber chemotypes were physiologically and morphologically tolerant to UV-B radiation.

http://www.hempforus.com/reseaag4.htm
 

eza82

Well-Known Member
Found this info which was great read !

UNDERSTANDING CANNABINOIDS


The cannabis plant is well known for its psychotropic and medicinal qualities, as well as its unique effect on the human body and psyche. The chemicals or compounds responsible for these effects are known as cannabinoids. They are highly complex in nature and affect the human body in various ways.

Cannabinoids are a group of substances that are structurally related to THC (Delta-9-Tetrahydrocannabinol) or molecular compounds that bind to cannabinoid receptors in the human body. The term cannabinoid also refers to a unique group of secondary metabolites found in the cannabis plant, which are responsible for the plants unique pharmacological effects.

There are three general types:

Phytocannabinoids - compounds that occur uniquely in cannabis plants.

Endogenous cannabinoids - produced in the human body and supposedly in other mammals as well.

Synthetic cannabinoids - structurally similar compounds, produced synthetically under laboratory conditions.




CANNABINOID RECEPTORS

There are certain receptors in the human body that the cannabinoids can bind to, called cannabinoid receptors

As mentioned before, some of the cannabinoids are endogenous, which means that they are produced naturally inside the human body. Others are exogenous and must thereby be introduced into the body through the consumption of the cannabis plant. No matter which type of cannabinoid in question, they bind to one of two receptors found in the human body.

These are currently known as: CB1 and CB2

- CB1 receptors are found primarily in the brain. They are also found in both the male and the female reproductive systems. CB1 receptors account for the euphoric and anticonvulsive and relaxing effects of cannabis.

- CB2 receptors are almost exclusively found in the immune system, with greatest density in the spleen. The CB2 receptors account for the anti-inflammatory and other therapeutic effects of cannabis.




Several areas of the brain have high densities of these receptors,
which accounts for the different effects that the drug has on us.



Some of the impact on our nervous system is positive and the stimulus from cannabinoids can counteract the negative effect of certain medical conditions. There are however also some adverse effects that arise from long time use, mainly those affecting the hippocampus and the long term memory. Long-term use can also lead to a psychological condition called psychosis, which is often characterized by loss of contact with reality, resulting in unusual or bizarre behavior.

Research has shown that these adverse effects might become permanent when cannabis is used from an early age but other than that, the negative effects seem to be merely temporary and all neural and mental functions will be restored to their original state when cannabis is no longer introduced into the nervous system.

Although cannabis is a relatively harmless drug compared to some of the legal alternatives, it should not be disregarded that it may cause problems after long-time or chronic use.




TYPES OF CANNABINOIDS


There are at least 80 known cannabinoid compounds that have been isolated from the plant.

THC (Delta-9-Tetrahydrocannabinol), CBD (Cannabidiol) and CBN (cannabinol)
are the most prevalent cannabinoids and have received the most attention in scientific studies.

Other common and lesser cannabinoids are listed below:

- CBG Cannabigerol
- CBC Cannabichromene
- CBL Cannabicyclol
- CBV Cannabivarin
- THCV Tetrahydrocannabivarin
- CBDV Cannabidivarin
- CBCV Cannabichromevarin
- CBGV Cannabigerovarin
- CBGM Cannabigerol Monoethyl Ether

Here follows the breakdown of each of the cannabinoids relevant to the biosynthetic chain that eventually leads to the fully realized THC compound, as well as its degradation product.


CANNABIGEROL (CBG)



CBG is a precursor of higher cannabinoids such as CBC, CBD, THC and there are very small amounts of it in drug strains although it occurs in greater concentrations in hemp. It's a non-psychoactive cannabinoid but it is known for lowering blood pressure and it is also useful for treating mood disorders.



CANNABICHROMENE (CBC)



CBC is nonpsychoactive and it is used as an "energy-storage" compound which is readily converted back to CBG if needed. Some evidence show that CBC may play a role in providing the anti-inflammatory effects of cannabis and that it may also contribute to the overall analgesic or pain killing properties, but further research is needed to verify these assumptions.



CANNABIDIOL (CBD)



Cannabidiol is nonpsychoactive and was initially thought to have no effect on the psycho activity of THC. Recent evidence however show that smokers of cannabis are less likely to experience schizophrenia-like symptoms if there is a higher CBD to THC ratio. Experiments show that participants experienced less intense psychotic effects when intravenous THC was co-administered with CBD. It has been hypothesized that CBD acts as an allosteric antagonist at the CB1 receptor and thus alters the psychoactive effects of THC, resulting in a more easily manageable high.

CBD is generally considered to have more medicinal properties than THC. It appears to relieve convulsion, inflammation (and thereby also migraines), anxiety and nausea. That is why strains with a high concentration of CBD is suitable for medicinal use.

Although CBD has its own particular medicinal value it is not more important than THC when it comes to treating various afflictions. It is the interaction between the two that gives rise to the effect that sometimes alleviates the symptoms of various medical conditions.

CBD has a greater affinity for the CB2 receptor than for the CB1 receptor, meaning that its effect is mostly in the body and not so much in the head. CBD shares a precursor with THC and is the main cannabinoid in low-THC cannabis strains like hemp.

Landrace strains, usually of indica heritage, contain higher concentrations of CBD than recreational drug strains, which are usually bred towards a higher concentration of THC. This is the reason why strains containing high ratios of CBD can be difficult to find.



TETRAHYDROCANNABINOL (THC)




Tetrahydrocannabinol, also known as delta-9-tetrahydrocannabinol (Δ9-THC), is the primary psychoactive component found in the cannabis plant. It was first isolated by Raphael Mechoulam, Yechiel Gaoni, and Habib Edery from the Weizmann Institute of Science in Rehovot, Israel, in 1964.



This is the main compound that gives rise to the high that is tightly linked with the cannabis plant. It affects several areas of the brain simultaneously and can therefore give rise to an assortment of experiences, ranging from altered perception of time and the self, to feelings of euphoria and relaxation all through the body.

Medically, it appears to be analgetic, meaning that it is capable of alleviating even severe pain. It is also known to be neuroprotective, which rules out the possibility of brain damage, which was initially proposed to follow from heavy use of the plant. It has approximately equal affinity for the CB1 and CB2 receptors. By binding to CB1 receptors (the ones in brain) it produces the high that we are so familiar with. That is why the effects of THC is more cerebral, than the effect of CBD, which seems to have a greater affinity for the CB2 receptor.



TETRAHYDROCANNABIVARIN (THCV)



THCV is the propyl homologue of THC and is similar in structure. The propyl cannabinoids have so far been found in some varieties originating from Southeast and Central parts of Asia as well as Africa, Afghanistan, Pakistan, India and Nepal. What are considered some of the most potent marijuana varieties also contain propyl cannabinoids. Some examples include traditional African landrace sativas as well as pure Thai varieties and various hybrids known as Haze.

There are no reports on its activity in humans. From animal studies it appears to be much faster in onset and quicker to dissipate than THC. It appears that it's activity is somewhat less than of THC. THCV is known for removing the "ceiling" from the high, giving the smoker the impression that he only gets higher with every passing minute until the effect eventually wears off.



CANNABINOL (CBN)



Cannabinol is the primary degradation product of THC and increases in concentration with plant age. The concentration of this product in the bud is heavily dependent on the time of harvest. Harvesting the bud at a late stage also means that the concentration of CBN in relation to THC will be higher when compared to the peak of THC production.

CBN content also increases as THC degrades during storage and with exposure to light and air. It is only mildly psychoactive and can cause "fuzzy head", drowsiness, disorientation and sleepiness in the smoker, properties that can be considered unpleasant in nature compared to the clear high of the THC. Its affinity to the CB2 receptors is higher than for the CB1 receptor, meaning that it mostly affects the body.



THC BIOSYNTHESIS


In order to fully understand and appreciate the most important cannabinoids, we first have to take a look at how they are produced inside the plant from lesser, precursor compounds.

This image has been resized. Click this bar to view the full image. The original image is sized 1024x420 and weights 51KB.


By looking at this picture we get a better view of the metabolic pathway that leads to the desired psychoactive product called THC.

Upon researching how THC is produced in the plant, we came upon two different theories, that we will present here.

The first model, on the left, is supported by the scientific community, while the model on the right is based on information provided by some of the most experienced growers and breeders of our own community.

The first theory suggests that THC is refined from CBD and that they are linked in a chain as portrayed on the left. These conclusions might be based on the fact that it is possible to turn CBD into THC by bombarding it with ultraviolet radiation.

The second theory suggests that CBD and THC are actually not linked at all and that they are produced independently of each other from the shared cannabinoid precursor CBG.

The truth might lie somewhere in the middle. It has been suggested that when cannabis is exposed to UVB radiation, a secondary metabolic pathway is activated, effectively doubling the THC output. This is an evolutionary response to the harmful ultraviolet radiation that may cause mutations and other tissue damage in the plant. Studies on marijuana optics suggest that the globular head of the THC trichome binds solar energy and thereby prevents it from harming the plant. If this is true, then both models might be correct. One works all the time and the other kicks in under exposure to heavy solar radiation. More research is needed in order to confirm this theory but the elevated THC content of high altitude strains seems to support it.

Admittedly, our knowledge of molecular chemistry is not so advanced that we could make our own conclusions based on the molecular structure of the various cannabinoid compounds.

This biological production of the much desired THC compound that has made the cannabis plant so famous, all take place inside something called a trichome. Trichomes are fine outgrowths or appendages on plants that resemble crystal mushrooms in cannabis. Trichomes are not unique to cannabis plants but the psychoactive components that can be found in it are.



These "mushrooms" are in fact stalked, glandular containers of cannabis oil, which matures as it goes through the transformation into THC from lesser cannabinoid compounds.



THE DIFFERENT TYPES OF TRICHOME GLANDS


Trichomes are fine outgrowths or appendages on plants, also called resin glands. Trichomes can vary in size and structure depending on the plant in question. We are however only interested in the trichomes found on cannabis plants.

There are three known types of glands that occur on the cannabis plant.
They are most heavily concentrated on the floral parts of the female plant:


(Photo by Pistals)


Bulbous

These types of gland are the smallest (15-30 micron across). Anywhere from one to four cells make up the "foot" and "stalk," and one to four cells make up the "head" of the gland. They can be found everywhere on the surface of the plant that is above ground level. Head cells secrete a resin, presumably cannabinoids, and related compounds that accumulate between the head cells and the cuticle.

Capitate – Sessile

The second type of gland is larger (25 to 100 micrometers) and more numerous than the bulbous glands. They are called capitate, which means having a globular-shaped head. On immature plants, the heads lie flush, appearing not to have a stalk and are called capitate sessile. They have a stalk that is one cell high, although it may not be visible beneath the globular head. These cells secrete cannabinoids and related compounds.



Capitate – Stalked

These type of glands appear during flowering and occur especially on the bracts subtending a flower and seed and also small leaves that accompany the flowers. They contain the highest concentration of cannabinoids and can range in size from 150 – 500 microns. The male flowers also have stalked glands, but they are smaller and less concentrated than on the female plant. These resin glands contain the most THC, which is also why they are the most important. Good cannabis plants have mostly capitate-stalked glandular trichomes and in very high concentration.
(The structures pointed out by the red arrow is a cystolith hair that lack the bulbous head of the other trichomes.)

In order to determine the dominant type of trichome on your plant, you will need to look at the female flowers through magnification. Although different plants may seem as frosty as the next, it is actually the dominant type of trichome and the concentration in which it occurs that determines the potency of the final product.

The capitate-stalked glandular trichome changes color as it matures. Newly formed and immature glands are opaque, glands reaching optimum THC production are cloudy or milky and amber trichomes have already passed their peak. By looking at the trichomes you can also determine the best time to harvest your plants. When most trichomes have gone cloudy and a few amber ones have appeared, the plant is at its peak.




INSIDE THE TRICHOME

THC and other cannabinoids are produced mostly in one place on the cannabis plant:
inside the heads of the capitate-stalked trichomes.



How it happens:

Organelles produced by the plant called Vacuoles - which contain phenols, a chemical compound similar to alcohol and another type of organelle called plastids - containing hydrocarbons called terpenes, make their way up the trichome stalk and combine inside the secretory cavity into a fibrous mat. This concentrated mat is hit by UV-B light waves, causing the creation of cannabinoids. Since all of the psychoactive ingredients are produced inside the trichome, these tiny resin heads have long been sought after by hash and oil makers and can be separated from the plant and harvest in a variety of ways.



Why Trichomes?

Cannabis and many other plants have evolved resin trichomes for variety of uses. They protect the plant from UVB light rays, especially Cannabis plant since THC has very good UV-B light absorption. It protects the plant from insects and animals and also provides protection for buds from low humidity and harsh winds.
 

RichED

Well-Known Member
i use a 250w hps, a 250w mh, and a uvb 20 at about a foot and a half away on for 1 hour a dayi run them all at same time
if im growing a low producer i put some cfls around lower buds
i use a 39 inch sq tent and grow in soil with organic mixtures for nutes
im very happy with my setup it is enough for one person and a half my wife
i have no need a few thousand w bulbs set up not selling or giving just smoking
 

Dr. Grow Mo

Member
For Flowering im thinking of getting cfls 2.0 and 5.0 uvb, but i heard you are using 10.0 . Isnt the uvb spectrum for the 10.0 just a little higher than that professor you claimed in your post? i read that the 10.0 is about 300 ish
 

eza82

Well-Known Member
hey Sic, how the hell are you ? Hope all is well in your neck of the woods !

Im in the USA now (MI).... just made a huge move from downunder :) - I can now grow ligit :)
 
Top